1025. Divisor Game
Description
Alice and Bob take turns playing a game, with Alice starting first.
Initially, there is a number n on the chalkboard. On each player’s turn, that player makes a move consisting of:
- Choosing any integer
xwith0 < x < nandn % x == 0. - Replacing the number
non the chalkboard withn - x.
Also, if a player cannot make a move, they lose the game.
Return true if and only if Alice wins the game, assuming both players play optimally.
Example 1:
- Input: n = 2
- Output: true
- Explanation: Alice chooses 1, and Bob has no more moves.
Example 2:
- Input: n = 3
- Output: false
- Explanation: Alice chooses 1, Bob chooses 1, and Alice has no more moves.
Constraints:
- 1 <= n <= 1000
💡 Hint 1:
If the current number is even, we can always subtract a 1 to make it odd. If the current number is odd, we must subtract an odd number to make it even.
Submitted Code
class Solution:
def divisorGame(self, n: int) -> bool:
return n % 2 == 0
Runtime: 0 ms | Beats 100.00%
Memory: 17.76 MB | Beats 60.93%
짝수로 시작하면 n - 1로 밥에게 홀수를 넘길 수 있고, 마지막에 n이 1일 때 받는 플레이어가 지게 되기 때문에 앨리스가 무조건 이길 수 있다. 반대로 홀수로 시작하면 x로 홀수만 선택 가능하기 때문에 홀수 - 홀수가 되서 밥에게 짝수를 넘겨줄 수 밖에 없고, 결국 앨리스가 지게 된다.