Description

Given two integers left and right, return the count of numbers in the inclusive range [left, right] having a prime number of set bits in their binary representation.

Recall that the number of set bits an integer has is the number of 1’s present when written in binary.

  • For example, 21 written in binary is 10101, which has 3 set bits.

Example 1:

  • Input: left = 6, right = 10
  • Output: 4
  • Explanation:
    6 -> 110 (2 set bits, 2 is prime)
    7 -> 111 (3 set bits, 3 is prime)
    8 -> 1000 (1 set bit, 1 is not prime)
    9 -> 1001 (2 set bits, 2 is prime)
    10 -> 1010 (2 set bits, 2 is prime)
    4 numbers have a prime number of set bits.

Example 2:

  • Input: left = 10, right = 15
  • Output: 5
  • Explanation:
    10 -> 1010 (2 set bits, 2 is prime)
    11 -> 1011 (3 set bits, 3 is prime)
    12 -> 1100 (2 set bits, 2 is prime)
    13 -> 1101 (3 set bits, 3 is prime)
    14 -> 1110 (3 set bits, 3 is prime)
    15 -> 1111 (4 set bits, 4 is not prime)
    5 numbers have a prime number of set bits.

Constraints:

  • 1 <= left <= right <= 106
  • 0 <= right - left <= 104

💡 Hint 1:
Write a helper function to count the number of set bits in a number, then check whether the number of set bits is 2, 3, 5, 7, 11, 13, 17 or 19.

Submitted Code

class Solution(object):
    def countPrimeSetBits(self, left, right):
        """
        :type left: int
        :type right: int
        :rtype: int
        """
        prime_nums = [2, 3, 5, 7, 11, 13, 17, 19]
        result = 0

        for num in range(left, right+1):
            count_bit = bin(num).count("1")
            
            if count_bit in prime_nums:
                result += 1
        
        return result

Runtime: 131 ms | Beats 51.56%
Memory: 12.61 MB | Beats 74.22%

left 또는 right의 최대값 106은 이진수로 11110100001001000000이기 때문에 범위 내에서 가능한 1의 최대 개수는 19개(01111111111111111111)다. 1부터 19까지 숫자들 중 소수는 2, 3, 5, 7, 11, 13, 17, 19이다.
& 연산자로 비트를 하나씩 밀면서 1의 개수를 세는 방법은 시간이 너무 오래 걸려서 bin()count()로 빠르게 셌다.

Other Solutions

1st

def count_one(n):
    ans = 0
    while n:
        n &= n-1
        ans += 1
    return ans

class Solution:
    def countPrimeSetBits(self, left: int, right: int) -> int:
        prime = [2, 3, 5, 7, 11, 13, 17, 19]
        total = 0
        for i in range(left, right+1):
            new = count_one(i)
            if new in prime:
                total += 1
        return total

time complexity:
space complexity: 𝑂(1)

1비트의 개수를 세는 방법

  1. n & 1 == 1으로 최하위 비트가 1인지 확인한 후 n >>= 1으로 다음 비트를 검사하기
  2. Brian Kernighan 알고리즘(n &= n - 1)

2nd

def countPrimeSetBits(self, L, R):
    return sum(665772 >> bin(i).count('1') & 1 for i in range(L, R+1))

소수의 집합(2, 3, 5, 7, 11, 13, 17, 19)을 비트마스크로 저장하는 방법이다.

index:  19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
bits :   1  0  1  0  0  0  1  0  1  0  0  0  1  0  1  0  1  1  0  0

bits를 2진수로 놓고 이를 10진수로 변경하면 665772이 되기 때문에 이 숫자가 쓰였다.
각 숫자의 1비트 개수 k만큼 비트마스크를 오른쪽으로 시프트한 후 & 1으로 맨 끝 비트를 확인해서 1이면 소수임을 알 수 있다.

Leave a comment