938. Range Sum of BST
Description
Given the root node of a binary search tree and two integers low and high, return the sum of values of all nodes with a value in the inclusive range [low, high].
Example 1:

- Input: root = [10,5,15,3,7,null,18], low = 7, high = 15
- Output: 32
- Explanation: Nodes 7, 10, and 15 are in the range [7, 15]. 7 + 10 + 15 = 32.
Example 2:

- Input: root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
- Output: 23
- Explanation: Nodes 6, 7, and 10 are in the range [6, 10]. 6 + 7 + 10 = 23.
Constraints:
- The number of nodes in the tree is in the range [1, 2 * 104].
- 1 <= Node.val <= 105
- 1 <= low <= high <= 105
- All
Node.valare unique.
Submitted Code
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rangeSumBST(self, root: Optional[TreeNode], low: int, high: int) -> int:
self.total = 0
def dfs(node):
if not node:
return
if low <= node.val <= high: # 현재 노드값이 범위에 포함되면 합계에 더하기
self.total += node.val
if node.val > low: # 현재 노드값이 범위 최소값보다 클 때만 왼쪽 노드 탐색
dfs(node.left)
if node.val < high: # 현재 노드값이 범위 최대값보다 작을 때만 오른쪽 노드 탐색
dfs(node.right)
dfs(root)
return self.total
Runtime: 0 ms | Beats 100.00%
Memory: 25.08 MB | Beats 87.81%
이진 탐색 트리의 특성을 이용하면 모든 노드를 탐색하지 않아도 된다.
Other Solutions
1st
class Solution:
def rangeSumBST(self, root: Optional[TreeNode], low: int, high: int) -> int:
if not root:
return 0
if root.val < low:
return self.rangeSumBST(root.right, low, high)
if root.val > high:
return self.rangeSumBST(root.left, low, high)
return root.val + self.rangeSumBST(root.left, low, high) + self.rangeSumBST(root.right, low, high)
time complexity: 𝑂(𝑛)
space complexity: 𝑂(ℎ)
인스턴스 변수나 내부의 또 다른 함수 없이도 풀 수 있다.